Technical Handbook and Product Catalog

ACO DRAIN

Product Selection Guidelines
Product Details
Technical Design Support
The ACO Group

Founded in 1946, the ACO Group manufactures products for the building and construction industry.

Today, ACO employs over 3,800 people world-wide and has sales and manufacturing operations in more than 40 countries.

ACO is the world leader and pioneer of modular trench drain systems. ACO drainage systems are used in a variety of applications from domestic environments to airports. ACO products have been used at many prestigious locations, including Olympic stadiums, since 1972.

ACO USA was founded in 1978 and is America’s foremost manufacturer of trench drainage products.
Trench drain pioneers

ACO Drain is the market leading, modular trench drain system and is manufactured at the company’s modern manufacturing facilities in Ohio, Arizona and Iowa.

ACO Drain offers the most comprehensive range of trench drain solutions for every application. ACO Drain products come in a variety of widths, depths, and load ratings, with grates to suit.

In conjunction with a comprehensive, quality product range, ACO supports its business with extensive stocking distributors, technical sales support and world class customer service.
Contents

Surface Drainage

6 Surface drainage options
8 Product selection
10 Trench drain hydraulics
16 Loadings
22 Material data
24 End user requirements

Standard Products

26 KlassikDrain - K100S, KS100S
40 PowerDrain - S100K, S300K
52 Polymer concrete catch basins
54 Accessories
56 FlowDrain - FG100, FG200
70 FastForm - FF300, FF600

Problem Solving Products

78 SlabDrain - H80, H100, H80K, H100K, H100SK
84 ChemDrain - C100, CK100S, CS100K, CH80, CH100, CH80K, CH100K, CH100SK
100 Brickslot
102 Membrane Drain
104 MiniKlassik
106 Cross Sidewalk Drain (CSD)

Technical Support and Other Information

110 Trench hydraulics service
111 Grate hydraulics service
112 Layout & scheduling service
114 Ponding analysis
115 Chemical resistance
116 Construction and installation
120 Installation diagrams
122 Volumetric channel capacities
123 Glossary & part number listing
Key

<table>
<thead>
<tr>
<th>Load class</th>
<th>up to C</th>
<th>up to E</th>
<th>up to F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grate options</td>
<td>Limited</td>
<td>Small</td>
<td>Wide</td>
</tr>
<tr>
<td>ADA compliance</td>
<td>ADA grate(s) available</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Options for dealing with surface drainage

Surface drainage is important.

Whether frequent light rainfall or occasional heavy downpours, surface drainage is necessary. It prevents damage to pavement or property, and reduces safety hazards caused by ponding. Surface drainage is designed to:

- Reduce ponding (standing water)
- Reduce slip hazards and subsequent injury
- Protect, and extend, life of paved surfaces
- Protect property from flood damage
- Reduce inconvenience to public users
- Reduce hydroplaning on roads

Options available:

- Ignore it
- Open swale
- Catch basins
- Trench drains

For solid pavements the first two are not ideal. Catch basins or trench drains are the most viable solutions.

2004 Master Format Codes

Trench drains and grates originally fell into Divisions 2, 3, 5 and 15.

With the expanded Master Format categories they now fall into the following divisions:

03 48 00 - Precast Concrete Specialties
05 53 00 - Metal Gratings
22 14 00 - Facility Storm Drainage
33 44 00 - Storm Drainage Utilities
Sustainable drainage

Sustainable drainage is an element of the ‘Hydrological Cycle’. It is the collection of rainwater, its treatment and, ultimately, its reuse.

The process involves capturing water run-off, that may or may not contain pollutants, so it can be dealt with in a controlled manner. The water can then be treated, stored for future use, or transported to receiving waterways. This transfer of water should come at low cost, and cause minimal damage and danger to the environment.

Surface drainage can be used where rainwater has collected on paved areas for the ‘capture’ part of this process.

Trench drains are ideal for the capture and collection of storm water run-off. They form a barrier to prevent rainwater run-off flowing onto the soft landscaping where collection is more difficult. This is of particular importance if the risk of contamination is high, such as highway and gas station applications.

ACO provides a wide range of trench drains to meet the hydraulic needs of any sustainable drainage design.

LEED

‘Leadership in Energy and Environmental Design’ provides a green building rating system. Principles have been applied to commercial and institutional projects, schools, multi-unit residential buildings, manufacturing plants, laboratories and other building types.

Areas where the use of trench drainage may assist in the assignment of credits include:

SUSTAINABLE SITES
Credit 5.1 - Site Development
Compared to catch basins, trench drains require minimal excavation; reducing site disruption.

Credit 6.1 & 6.2 - Stormwater Design
Trench drains capture run-off, enabling treatment which prevents pollution of receiving streams. Runoff can also be collected for non-potable uses such as irrigation.

WATER EFFICIENCY
Credit 1.1 & 1.2 Water Efficient Landscaping
Reduce or eliminate use of potable water for irrigation by capturing rainwater in trench drains and storing for future irrigation use.

Credit 2 - Innovative Wastewater Technologies
Using captured rainwater for building sewage conveyance.

Credit 3.1 & 3.2 - Water Use Reduction
Capturing and re-using stormwater for non-potable applications.

MATERIALS & RESOURCES
Credit 2.1 & 2.2 - Construction Waste Management
Reduction of debris going to landfills and incinerators. Compared to area drains, trench drains require minimal excavation; reducing site waste/debris.

Compared to polystyrene formers, FastForm cardboard formers are easier to dispose of.

Go to www.usgbc.org for full details.
Choosing the correct trench drain

When choosing a trench drain, the following factors should be considered:

Hydraulic Performance - how much liquid is to be collected and removed.

Application - there are a number of issues relating to where the drain is used.

These factors should be addressed regardless of whether a modular channel system or cast-in-place is used.

1. **Hydraulic performance**

2. **Application**
 2a) **Loading**
 2b) **Durability**
 2c) **User requirements**
The volume of liquid the trench drain collects and carries in a given time period.

Important factors include:
- Width and length of catchment area
- Rainfall intensity
- Grade of pavement
- Outlet size and location

Loading refers to any foot or vehicular traffic being applied to the trench and grate.

Load standards are a tool to enable comparison of products and provide a measurement scale.

Important factors include:
- Weight
- Wheel type - solid or pneumatic
- Traffic patterns - traffic speed, frequency, braking, turning, etc.

To ensure long life, products must be carefully selected and installed correctly. An investigation of the application's environment is recommended to identify any chemicals or other corrosive elements that may affect material choices. Typical trench materials include polymer concrete, fiberglass and HDPE plastic.

Important factors include:
- Trench material
- Grate material
- Edge protection
- Chemical resistance
- Installation

There is often more than one channel, grate and locking option that will meet hydraulic, loading and chemical resistance needs. User requirements are project specific and are determined by either design preference or legal obligations.

Important factors include:
- Aesthetics
- Legislative requirements - e.g., ADA compliance
- User safety - e.g., Heelsafe, bicycle safe
- Security - grate locking options
Modeling hydraulic performance of trench drains

Assumption:
Rainwater falls over an area and runs towards, and collects at, any low point.

Conclusion:
Trench drains intercept and collect surface liquid. It is then carried to a point were it can discharge into an underground pipe system or culvert.
Non-uniform flow accounts for liquid being carried in a trench plus the constant addition of liquid collected through the grates along the trench run - lateral intake.

A characteristic of non-uniform flow is that liquid velocity and height change at successive cross sections along the trench.

To correctly model this situation, differential calculus is required; usually computer modeling is needed.

As a result of empirical testing, ACO has developed a computer program, ‘Hydro’, that models trench hydraulics.

ACO provides a complimentary service for trench hydraulics. See page 110 for details.

A commonly used method of calculating trench hydraulics involves the use of equations for steady uniform flow.

This approach is better suited for pipe design where liquid velocity and height remain constant along the pipe.

No allowance is made for lateral intake.

Steady, uniform flow can be used in culvert (open top) design for dams or irrigation trenches. These culverts are used to carry liquids from one area to another and do not account for lateral intake of liquids.
To calculate the correct size of trench drain, catchment run-off must be calculated.

- Catchment area - length x width of pavement (ft) \(A \times B \)
- Rainfall intensity in inches per hour \(C \)

Once catchment run-off 'Q' is calculated, other inflows, e.g., down spouts, can be added.

Other factors that affect how much liquid reaches the trench and how quickly;

- Ground fall percentage \(D \)
- Pavement material - some materials absorb liquids, e.g., brick pavers \(E \)
- Position and size of outlet pipe \(F \)
- Surface roughness of trench material. Manning's coefficient of roughness figures are available \(G \)
- Angle of approach to trench - this can affect grate hydraulics (steep slopes may cause bypass) \(H \)

Determining trench size

Once run-off 'Q' is calculated, it is used with the other factors above to determine the correct size of trench. The trench size is dictated by the clear opening and invert depth - changing either or both of these will create a smaller or larger 'flow area'.

- Clear opening of trench is the normal specified dimension, e.g., 4", 8", etc.
- Overall grate and outside trench dimensions are misleading. Some trench drain companies promote these sizes to mislead specifiers and installers, e.g., overall trench dimension of 6". Usually clear opening will be approx. 4" - this is the dimension available for hydraulic flow, not 6".

\[
Q \ (\text{GPM}) = \frac{\text{Area} \ (A \times B) \times \text{Rainfall intensity} \ (C)}{60 \text{(minutes)} \times 1.6 \text{(Conversion to gallons)}}
\]
Factors affecting trench run hydraulics

Ground fall or slope

Slope increases the velocity of liquid within the trench drain and improves hydraulic efficiency. Slope can be introduced by:

1. Existing pavement with natural fall.
2. Introducing slope along the base of the trench run.
3. Combination of both.
4. Negative fall.

Effect of slope on trench hydraulic performance

Non-uniform flow
Accurately accounts for affect of slope and run length. Models the accurate hydraulic performance of trench. Allows correct size of trench drain to be used.

Zero slope
Slope is part of the equation - but not as a multiplier. Trench size is accurately calculated.

Small slope
Slope is part of the equation - but not as a multiplier. Trench size is accurately calculated.

Large slope
Slope is part of the equation - but not as a multiplier. Trench size is accurately calculated.

Steady uniform flow
Uses Area x Velocity to estimate flow capacity. When there is little or minimal slope, velocity tends towards zero, and trench performance is under estimated.

Zero slope
Slope is a multiplier in the equation \(Q = A \times (1/n x m^3/s) \). Velocity is calculated as zero and trench size cannot be calculated.

Small slope
When slope is small, velocity is calculated as minimal. Trench size is over sized - resulting in a larger, more costly trench.

Large slope
When slope is large, velocity is also calculated as high. Trench size is under sized - resulting in flooding.
Factors affecting trench run hydraulics

Position and size of outlet pipe

A trench drain is ultimately connected to the underground pipe system. If the trench drain is designed with an end outlet, the water builds up along the trench and may flood before reaching the outlet. Alternatively a larger and more costly trench drain and/or more outlets are required to prevent flooding.

If there is zero ground slope and underground pipe work position is not a factor, the trench drain can be designed with a central outlet. Run lengths to the outlet are shorter and less likely to exceed capacity and flood. This allows a smaller, more economic trench drain and/or fewer outlets to drain the same volume.

If there is a central high point, double end outlets offer maximum continuous slope and utilize the natural ground slope towards the outlets.

Size and type of outlet

In modeling hydraulic performance of trench drains, the assumption often made is that the outlet is not a restricting factor. Designers should ensure the outlet or subsequent pipe work is not undersized and acts as a ‘throttle’ to the trench drain.

End outlet - pipe connected horizontally at the end of the trench. Offers lowest outlet capacity.

Bottom outlet - pipe connected vertically out of the bottom of the trench. Offers improved outlet capacity due to gravity.

In-line catch basin - usually same width as trench, but deeper. Allows use of trash bucket to collect debris. Offers superior outlet capacity as larger pipes can be connected and increased depth gives significant head of water pressure.

Catch basin - large basin wider and deeper than trench. Allows use of trash bucket to collect debris. Offers best outlet capacity as largest pipes can be used and increased depth gives significant head of water pressure.
Angle of approach to trench

Grate hydraulics

Usually the trench drain reaches hydraulic capacity before grate intake hydraulics affect performance. Occasionally grate hydraulics become the determining factor, especially with restricted openings, e.g., perforated grates.

To calculate grate hydraulics, the following information is required:
- Trench length
- Width of catchment area each side of trench
- Pavement type
- Geometry of catchment area including slope approaching the grate

100% Capture
All liquid flowing through grate

Less than 100% Capture
Not all liquid flowing through grate, bypass has occurred. Could be due to not enough grate open area, too much liquid, or too much slope perpendicular to grate

ACO provides a complimentary service for grate intake hydraulics. See page 111 for details.

Hydraulic summary

Key factors to consider:

1. Lateral intake

See page 11

2. Clear opening

See page 12

3. Slope

Neutral invert no ground fall

See page 13

Sloped invert no ground fall

See page 14

4. Outlet
Factors affecting loading

Loading is the type of traffic the trench drain is exposed to. Traffic refers to any foot or vehicular traffic moving over the trench drain.

The following should be considered:

Wheel loads

- Weight of vehicle/cart and its typical load
- Type of wheels - solid or pneumatic tires
- Will other unusual vehicles, e.g., dollies/dumpsters, be going over the trench?

Larger and/or pneumatic tires spread the load over a larger contact area - exerting a low stress (psi).

Static loads

- Load/weight applied vertically onto the trench, no other movement.

Static loads are used when load testing a grate, but poorly simulate real traffic scenarios. They provide a measuring scale to rate loadings of grate/trench drain.

Small and/or solid tires concentrate the load onto a small contact area, exerting a high stress (psi).

A grate and/or system with a higher load rating will be required in these applications.

Dynamic loads

- Will vehicles be travelling across or along the trench?
- Will traffic be braking or turning on the trench?
- Frequency of traffic?
- Speed of traffic?
- Is trench located at bottom of a ramp?

Moving traffic creates a dynamic load. This movement tries to twist the trench drain out of position. Trench body, grate loading, installation, and locking mechanisms, are all important factors to consider when addressing dynamic loads.

The more movement (turning and/or braking) and the faster the traffic, the greater the dynamic load.
Load Standards

There are a number of American standards that make reference to grate loading. There is no current standard that specifically deals with trench drains of different widths.

Common standards in North America:

- **ASME: A112.6.3 - 2001**
 Plumbing standard relating to internal floor drains. Test blocks are 3.5” diameter and grates are rated up to 10,000lbs - 1,039psi.

- **AASHTO Standard Specification for Highways Bridges**
 Standard relating to design for bridges. Loadings are dealt with by wheel ‘footprints’ and axle ratings. No specification is given for measurement of the performance of trench drains. General specifications relate to vehicle loading up to HS25. Maximum truck weight 90,000lbs - 3 axles.
 AASHTO: M306 - 05 acknowledges the addition of HS25 as referenced by some trench drain manufacturers.

- **AASHTO: M306 - 05 Drainage Structure Castings**
 Standard relating to castings used in roadways. Test blocks are 9” x 9” and maximum rating is 40,000lbs - 494psi

- **A-A60005 Federal Specifications (Previously RR-F-621E)**
 General federal product specification aimed at manhole covers and catch basin grates. Test blocks are 9” x 9” and maximum rating is 25,000lbs - 309psi

- **FAA: 150/5320-5B & 6D**
 Standard relating to airport drainage and pavement designs. Load tests up to 100,000lbs, but no specific test block size specified.

- **’200,000lb proof load’**
 The lack of a very heavy duty test standard created the need for a ‘line of measurement’. Manufacturers of cast iron access covers used the structure of the RR-F-621E standard with 9” x 9” test block but promoted the use of a 200,000lbs proof load - 2,469psi. Although no independent standard refers to this measure, it has become widely accepted as a ‘line of measurement’ for very heavy duty loadings.

Most of these standards refer to catch basin or cast-in-place grates, which are larger than most trench drain grates.

DIN 19580 / EN 1433

The only standard written specifically for trench drains, and internationally recognized, is **DIN 19580**.

DIN 19580 accounts for different widths of grates. For trench drains less than 8” wide, the required test block for load testing is 10” long by 3” wide. For trench drains 8” and 12” wide, the test block is 10” by 6”; for trench drains over 12”, the test block is 10” diameter. This ensures that the full force of the test load is directed onto the grate.

DIN 19580 is being superseded by **EN 1433**. EN 1433 tests products in exactly the same method as DIN 19580 with the same load categories, A - F up to 202,320lbs - 4,182psi.

As with DIN 19580, EN 1433 offers testing methods for both the complete trench drain and individual grates. It accounts for both proof loading and catastrophic failure.
2.a Application - Loading

Test blocks

Load test using oversize test block

Test load applied to a grate to suit a 4” clear opening trench through a 9” x 9” test block. The grate is not being tested - the load is taken by the supports rather than the grate. Any results from this type of grate test are questionable.

DIN 19580 / EN 1433 load test - with relevant test block

A 3” x 10” test block applied to a similar grate - the full test load is being applied to the grate giving a meaningful result.

The diagram below shows test block sizes required by the various load standards available in North America, relative to a 4”, 8” and 12” trench. To be a reliable grate test, the test block should fit inside the internal width, otherwise the load is transferred onto the grate supports.

ASME A112.6.3 - 2001

200,000lb Proof Load
AASHTO M306-05
A-A60005

DIN 19580 / EN 1433

4” channel
8” channel
12” channel
ACO believes DIN 19580 / EN 1433 is currently the most recognized, independent standard to measure product performance.

CAUTION: Check if a stated load class relates to a specific standard.
Load Class A
3,372lbs - 15kN
Residential and light pedestrian traffic

Load Class B
28,100lbs - 125kN
Sidewalks and small private parking lots

Load Class C
56,200lbs - 250kN
Parking lots and general commercial areas

Load Class D
89,920lbs - 400kN
Trafficked sections of roads and highways

Load Class E
134,800lbs - 600kN
Industrial areas, gas stations and light commercial forklifts

Load Class F
202,320lbs - 900kN
Aircraft runways, docks, heavy fork trucks and heavy wheel loads
Modular trench drain systems are generally manufactured from either polymer concrete, fiberglass or HDPE (High Density Polyethylene).

ACO Drain commercial grade trench systems are manufactured from either polymer concrete or fiberglass. Other materials do not meet the compressive strength and thermal expansion properties required in commercial and industrial projects.

ACO only uses HDPE as a trench material for residential applications.

Polymer concrete

Polymer concrete is a versatile composite material produced by mixing mineral aggregates with a resin binding agent. The finished material has excellent mechanical and thermal properties and offers good corrosion resistance to many chemicals. A maximum working temperature of 180°F (82°C) is recommended.

For increased chemical resistance, Vinyl ester polymer concrete is available. This consists of Vinyl ester resin binder with superior silica aggregate fillers.

See chemical resistance chart page 115.

Due to their structural rigidity, polymer concrete trench drains can be used in a variety of pavement types such as concrete, asphalt and brick pavers.

Fiberglass

Fiberglass uses similar resin binding agents to those used for polymer concrete, but glass mat and fibers are used instead of mineral aggregates to provide a robust flexible material.

Fiberglass trench drains are designed to be fully encased in concrete.

Cement concrete

Cement concrete is Portland cement mixed with aggregates. Generally used for large cast-in-place slab applications, where mass is required for structural rigidity.

HDPE (Plastic)

High Density Polyethylene (HDPE) is the most common plastic used in trench drains. HDPE is a readily available, economical material that is easy to mold. HDPE has poor thermal properties. A trench drain of 100ft in length with an ambient temperature change of 75°F can expand (or contract) up to 9.9 inches more than the surrounding concrete slab. The concrete surround will only change minimally and cause the trench to buckle or pull away from the concrete.

Grates

Grates are manufactured from a variety of materials. The most common are ductile iron, mild steel, stainless steel and plastic.

Grates need better tensile properties than the trench body to withstand flexural loads. Grates can be changed or easily replaced after installation, unlike the trench drain body.
Edge protection

The exposed edge of the trench helps hold the grate in position and is subject to the same loads as the grate. In addition to the effect of climate and weight of vehicles, it may be exposed to impact from items being dropped or pulled across it (e.g. snow plows). Once the edge fails, the grate will move and cause catastrophic failure.

Metal edges are most commonly used to withstand the abuse of traffic. Edge protection rails should be integrally cast-in or mechanically connected to the trench body. Edge rails that sit over existing standard edges are often ill-fitting and susceptible to failure.

Edge protection rails also provide some protection during installation, particularly if the wearing course of the pavement is not applied immediately. Appropriate edge protection is particularly important in asphalt situations where rolling machines can damage trench edges, leading to premature failure of the trench.

<table>
<thead>
<tr>
<th>Material</th>
<th>Cement Concrete</th>
<th>Polymer Concrete</th>
<th>Fiberglass</th>
<th>HDPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>4,500psi C-39</td>
<td>14,000psi C-579</td>
<td>24,400psi D-695</td>
<td>8,450psi D-695</td>
<td></td>
</tr>
<tr>
<td>587psi C-78</td>
<td>4,000psi C-580</td>
<td>9,943psi D-790</td>
<td>2,224psi D-790</td>
<td></td>
</tr>
<tr>
<td>419psi a</td>
<td>3,000psi C-307</td>
<td>7,378psi D-638</td>
<td>1,993psi D-638</td>
<td></td>
</tr>
<tr>
<td>+5.00% C-97</td>
<td>+0.07% C-97</td>
<td>+0.33% D-570</td>
<td>+0.31% D-570</td>
<td></td>
</tr>
<tr>
<td>300 cycles maintain 80% structural integrity</td>
<td>300 cycles modulus of elasticity 95.1% C666</td>
<td>223 cycles modulus of elasticity 89.5% C666</td>
<td>223 cycles FAILED modulus of elasticity test C666</td>
<td></td>
</tr>
<tr>
<td>6.5 x 10^-6 per °F E831</td>
<td>WVT - 0.0364g/m² 1,592hrs E96</td>
<td>WVT - 0.1085g/m² 1,592hrs E96</td>
<td>WVT - 0.1392g/m² 1,592hrs E96</td>
<td></td>
</tr>
<tr>
<td>See water absorption test</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 rating E119</td>
<td>Flame spread : 0 Smoke density : 5 E84</td>
<td>After flame time : 216 seconds - fail UL-94</td>
<td>After flame time : 390 seconds - fail UL-94</td>
<td></td>
</tr>
<tr>
<td>Good b dependent on proper curing</td>
<td>2,000hr exposure no change G-23</td>
<td>1,000hr exposure no change G-23</td>
<td>1,000hr exposure no change G-23 FAILED TEST</td>
<td></td>
</tr>
<tr>
<td>n=0.013</td>
<td>n=0.011</td>
<td>n=0.008</td>
<td>n=0.010</td>
<td></td>
</tr>
<tr>
<td>Poor</td>
<td>Good</td>
<td>Good</td>
<td>Good</td>
<td></td>
</tr>
</tbody>
</table>

a. Equals 6.25 x √ compressive strength (psi) - PCA Design & Control of Concrete Mixtures - 14th ed
b. Carbonation can affect steel rebar leading to poor weathering (PCA Design & Control of Concrete Mixtures - 14th ed)
c. Bending exceeded 5% strain - unable to complete test
2.c Application - User Requirements

Once a trench drain is chosen to meet hydraulic performance, loading and durability requirements, the final options relate to project specific end user needs or legislative obligations:

1. **Aesthetics**

2. **Legislative requirements**

3. **User safety**

4. **Grate security**
The grate is the most visible part of the trench drain and aesthetically the most important.

Grates can be selected to ‘blend’ into the pavement, or used as a feature, or border.

Once hydraulics, loading and chemical resistance requirements are met, the decision is based on visual or cost preferences.

ADA requirements are set out in The Americans with Disabilities Act of 1990; Section 4.5.4.

‘Where grates are used within walking surfaces, the open slots should be no greater than 0.5 inches (12.7mm) wide in one direction. Where the length of the slot is greater than 0.5 inches, the opening should run perpendicular to the main direction of traffic’

ASME: A112.6.3 - 2001: Section 7.12 Heel Resistant Strainers and Grates.

‘A grate designed to resist entry of high-heeled shoes, in which the maximum grate hole size in least dimension shall be 5/16 in. (8mm).’

ACO offers a range of ‘Heelsafe’ grates designed to prevent small stiletto style heels becoming trapped, causing injury or falls.

ACO recommends that grates should be secured to prevent movement by traffic, which can cause damage to the trench and/or grate.

There are a number of locking options available, these include:

- Boltless locking - mechanisms that hold grates captive without use of bolts. They are quick to install and remove, making installation and maintenance easier.
- Bolt locking - uses bolts to hold grates in place. Bolts fasten into either the frame or locking bar that straddles the trench.
- Other lockings - on rare occasions, something other than standard lockings are required - please contact ACO.

No US Standard exists detailing slot sizes to avoid bicycle tires becoming trapped.

Australian Standard AS 3996 - 2006 Clause 3.3.6 specifies maximum slot length dependent on slot width for grates that are deemed ‘Bicycle Tire Penetration Resistant.’

ACO offers bicycle safe grates determined not to have slots large enough to trap modern bicycle wheels based on this Australian Standard.

The diagram shows the slots perpendicular to the flow of traffic; this helps prevent wheelchair wheels and walking aids becoming trapped or slipping on the grate surface.